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Abstract—Recently, unmanned aerial vehicles (UAVs) and
reconfigurable intelligent surfaces (RISs) have merged as im-
portant enabling technologies for localization coverage extension
and localization accuracy improvement under signal blockage
and malicious interference conditions. However, most existing
works assume known locations of jammers, which is generally
impractical in real-world networks. To overcome this challenge,
we propose a novel RIS-enhanced wireless localization framework
against malicious interference with the support of either nar-
rowband or orthogonal frequency division multiplexing (OFDM)
pilot signals. A two-stage anti-jamming localization approach
is developed to first estimate the unknown channel and signal
information of the jammer and then localize the user’s position by
eliminating the jamming signal. More importantly, we utilize the
full potential of RIS to improve localization accuracy by optimiz-
ing the phase shift profile during the iterative process. Extensive
simulation results demonstrate the commendable performance
of our proposed framework, which can not only mitigate the
jamming effect but also achieve better localization accuracy,
offering a good reference for future heterogeneous and complex
wireless networks.

Index Terms—Wireless localization, malicious interference,
reconfigurable intelligent surface (RIS), phase optimization.

I. INTRODUCTION

LOCATION-based services (LBSs) have witnessed a
growing importance across various sectors, such as in-

telligent transportation, public safety, social networks, etc.
Recently, high-accuracy positioning services in typical urban
areas with severe signal blockage have attracted increasing
attention due to the ever-growing demands. Specifically, sig-
nal propagation from wireless infrastructures, e.g., base sta-
tions, roadside units, and Global Navigation Satellite Systems
(GNSS), to ground users are prone to partial or total blockage
by high-rise buildings in urban areas, significantly degrading
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localization performance [1, 2]. Unmanned aerial vehicles
(UAVs) have brought an alternative to extend communication
and localization coverage in blind areas, capitalizing on their
high mobility, ease of deployment, and reliable line-of-sight
(LoS) transmissions [3, 4]. Without relying on GNSS, UAV-
assisted techniques can facilitate accurate and reliable local-
ization by deploying the UAVs as aerial anchors, providing
supplementary localization information [5, 6]. As a result,
many efforts on UAV trajectory strategies have been put
forward to enhance the localization performance [7].

As another promising solution for overcoming signal block-
ages caused by obstacles, reconfigurable intelligent surface
(RIS) offers the capability of signal propagation environment
reconfiguration through a reflection phase controllable plane,
comprising a multitude of low-cost passive reflective elements.
Thanks to the capability of independent phase control of
incident signals, the RIS can alter the radio propagation in the
desired direction for enhanced signal reception [8]. By control-
ling its reflection characteristics, the RIS phase-shift design has
been extensively studied to support accurate localization and
energy efficiency [9, 10]. For example, by leveraging indoor
environments, the RIS can effectively convert the negative
impacts of multipath propagation into exploitable multi-signal
paths, thereby offering precise location services [11]. The RIS
also allows conformal architectures and flexible deployments
for outdoor environments [12]. As a result, the combinations
of UAVs and RISs possess significant potential for facilitating
high-accuracy localization of ground users in GNSS-denied
regions [13].

In recent years, malicious interference have grown increas-
ingly prevalent, driven by the declining cost and simplified
design of jamming devices. These attacks pose a significant
threat to both communication and positioning systems. For
example, jamming attacks can effectively disrupt or block
legitimate communication links by severely degrading the
signal-to-interference-plus-noise ratio (SINR) of the received
signals. However, when targeting positioning systems, the
primary objective shifts from causing temporary service inter-
ruptions to deliberately misleading the localization function.
Note that localization accuracy can be influenced by various
factors, including geographic features, equipment conditions,
and multipath effects. Among these, malicious interference
involving the continuous emission of radio frequency (RF)
signals by jamming devices plays a critical role in degrading
localization accuracy [14]. For simplicity, throughout the rest
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of this paper, the term jamming will be used to describe
malicious interference, and jammer will refer to the device
responsible for such interference.

To mitigate the effectiveness of malicious interference,
several anti-jamming countermeasures are utilized at the trans-
mitter, such as regulated transmitted power, frequency-hopping
spread spectrum, antenna polarization, and so on. The most-
used strategy at the receiver side is the filter design. Although
some existing literature has highlighted the possibility of jam-
ming and eavesdropping attacks in UAV-assisted localization
scenarios [15, 16], however, their contributions mainly concen-
trate on cases where GNSS signals are disrupted, while rarely
considering scenarios where the mixed positioning signals and
jamming signals, leading to reduced localization accuracy.

Addressing the above-mentioned challenges represents our
key motivation. In this paper, we propose a RIS-enhanced
wireless localization framework in the presence of unknown
malicious interference, which has been overlooked in most
existing works [15]. Specifically, we pay attention to a GNSS-
denied network environment, in which a hovering UAV can
offer wireless localization services to ground user equipment
(UE), but its direct communication links are blocked by high-
rise buildings. Encouraged by the reflection capability, a RIS
is deployed to provide a reflected path for pilot signals.
Meanwhile, a malicious jammer positioned at an undisclosed
location seeks to mislead the localization function by con-
tinuously emitting jamming signals with unknown constant
transmission power. Since most conventional wireless local-
ization technologies are susceptible to jamming, the unknown
jamming attack considered in our work will further introduce
new challenges to localization performance.

To this end, we utilize the full potential of the RIS and
propose a two-stage anti-jamming localization approach. In the
former stage, we investigate a jamming estimation approach
to identify the unknown channel and signal information of
the jammer. In particular, the jammer estimation problem
is formulated as a two-dimensional maximization problem
based on the maximum likelihood (ML) function and the
least squares (LS) criterion. To cope with its hardness, the
Jacobi-Anger expansion is utilized to approximate the original
problem into two separated one-dimensional problems, which
can be solved through linear search and further refined by
using the Quasi-Newton method. In the latter stage, we present
a UE localization approach to estimate the UE’s position by
eliminating the jamming signal constructed from the mea-
sured key information of the jammer. We also explore the
distinctions between narrowband and orthogonal frequency di-
vision multiplexing (OFDM) pilot signals within the proposed
localization framework. To further improve the localization
accuracy, we develop a phase optimization algorithm for anti-
jamming localization (POAJL) by iteratively adjusting the
phase shifts of the RIS based on the previous estimation
results. Our POAJL algorithm optimizes the phase shift profile
to maximize the reflected channel gain during the jamming
estimation stage, while simultaneously strengthening the re-
ceived power of the pilot signal and weakening the jamming
signal in the UE localization stages.

Our main contributions are summarized as follows:

• Unlike most studies with accurately measured position of
the malicious jammer, we formulate a RIS-enhanced anti-
jamming localization framework and propose a two-stage
localization approach for malicious interference elimination,
where the unknown channel and signal information of the
jammer is estimated in the former stage and then utilized
to localize the user’s position in the latter stage. Besides,
two types of pilot signals, namely narrowband and OFDM,
are studied in-depth to reveal their distinctions. Compared
with the narrowband-based localization, the OFDM-based
localization doesn’t require any prior knowledge of the path
fading factor.

• By fully exploiting the controllable phase shifts of the RIS,
we propose a phase optimization algorithm for anti-jamming
localization (POAJL) to alleviate the malicious interference
caused by the jammer without disturbing the UE, meanwhile
enhancing the received pilot signal throughout the iterative
UE localization process, which can greatly improve the
localization accuracy based on the historical estimation
results.

• Through extensive simulations, we investigate the impact
of the jammer’s location and transmission power, while
also discussing the localization performance based on nar-
rowband and OFDM pilot signals. We further improve
the proposed POAJL algorithm to overcome the drop in
localization accuracy when the relative distance between the
RIS and the jammer is similar to the distance between the
RIS and the UE. Simulation results reveal that our proposed
POAJL algorithm can outperform other approaches in terms
of localization accuracy.
The rest of this paper is organized as follows. We summarize

related works in Section II. The proposed RIS-enhanced
localization system against jamming attacks is formulated in
Section III and a two-stage anti-jamming localization approach
is provided in Section IV. To further improve the estimation
accuracy, we develop a RIS phase optimization process in
Section V. We provide extensive evaluation results in Section
VI and, finally, Section VII concludes this paper.
Notations : x, x, and X denote scalars, column vectors,

and matrices, respectively. The superscript T indicates the
transpose operation ((X)

T) and superscript H indicates the
Hermitian transpose operationn ((X)

H). ⊙, ×, and · denote
the Hadamard product, cross products, and vectorial dot,
respectively. ∥·∥ is the 2-norm, |·| is the module, ∠ (·) is the
true phase, and diag (·) is a diagonal matrix consisting of the
elements of the parameter. j =

√
−1 represents the imaginary

unit. [X]n,: and [X]:,n represent the n-th row and column of
matrix X , respectively. 0m×n is the all-zeros matrices and In
is the identity matrices. 1n and 0n are length n vectors of
unity and zeros.

II. RELATED WORK

Due to their mobility and flexibility, UAVs have been widely
utilized as aerial anchors or base stations, providing varying
vertical heights to establish the LOS paths and improve the
3-D localization performance, especially in scenarios where
GNSS is blocked [17–20]. To meet diverse communication
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Fig. 1. RIS-enhanced wireless localization system under malicious interference.

and localization service requirements for ground users, an in-
tegrated air-ground networking paradigm has become popular
to minimize the deployment number of dual-functional UAVs
[19]. In a UAV-enabled localization system, the lower bound
of mean-square error (MSE) is derived and further minimized
by considering the placement strategies of multiple UAV an-
chors. Semidefinite relaxation (SDR) technique and successive
weighted least squares (SWLS) estimation are leveraged to
a UAV-assisted multi-sensor localization system, addressing
scenarios with unknown UAV parameters, e.g., unknown po-
sitions and velocities [6]. During this time, the parameters
of users and UAVs should be simultaneously estimated, and
the Cramér-Rao lower bound (CRLB) can be approximately
achieved under mild Gaussian noise conditions. In addition,
proper UAV trajectories are investigated to further enhance
the localization accuracy [7, 21]. For example, a reinforcement
learning-empowered multi-object localization framework [21]
is proposed to autonomously optimize the trajectory of the
UAV to improve the localization precision and reduce the UAV
energy consumption.

As a promising technology for altering the radio propagation
environment, the RIS has been extensively utilized to facilitate
high-accuracy positioning services [22–30]. For instance, some
research works analyze the RIS-enhanced localization from the
perspective of the Fisher Information Matrix (FIM) [22, 23].
For near-field user localization, two practical signaling and
positioning algorithms are proposed, addressing a synchro-
nization mismatch problem in an OFDM downlink system,
where only a single anchor node is adopted to localize the
user with the assistance of a large RIS [25]. For far-field
user localization, the fundamental limits of multiple RIS-aided
OFDM localization systems are examined and the Bayesian
bounds are derived to estimate the user’s localization per-
formance [27]. The potential benefits of the non-line-of-sight
(NLOS) components in RIS-aided millimeter-wave (mmWave)
communication systems have been explored in improving joint
localization and environment sensing capabilities [28]. Be-

sides, a low-complexity approximated mismatched maximum
likelihood (AMML) estimator is developed to asymptotically
tighten the lower bound on localization when the user is
unaware of phase-dependent amplitude variations [29]. More-
over, the phase shift profile of the RIS can be optimized to
enhance the received signal strength (RSS) and, consequently,
improve the localization performance [9, 11, 13, 31]. A phase
profile optimization algorithm based on gradient descent and
alternative optimization methods is developed to obtain a
more accurate wireless localization, which aims to minimize
the CRLB [31]. For both near- and far-field localization and
attitude (i.e., orientation) estimation, a close-form RIS phase
profile is provided for joint communication and localization,
demonstrating remarkable performance even in asynchronous
signaling [9]. Distributed RISs are employed to manipulate
multipath signals for indoor positioning and a two-step posi-
tioning approach is developed to timely update RIS reflection
coefficients [11]. Combining UAV and RIS technologies, an
integrated system for ground vehicles is proposed to strike a
balance between communication and localization by solving
the joint UAV trajectory planning and RIS phase-shift config-
uration problem [13].

Technologies on UAVs and RISs also specialize in wireless
communication systems against jamming and eavesdropping
attacks [32–35]. A threat model is discussed in a RIS-
empowered multiple-input multiple-output (MIMO) system
with multiple data streams, which aims to optimize the
eavesdropper’s receive combining matrix and the reflection
coefficients of the malicious RIS [33]. To confront this threat,
a physical layer security (PLS) scheme for secrecy rate max-
imization is proposed by jointly optimizing the legitimate
precoding matrix and the number of data streams, the artificial
noise (AN) covariance matrix, the receive combining matrix,
and the reflection coefficients of the legitimate RIS [32, 33].
To facilitate the security of UAV networks in the presence of
an eavesdropper, a RIS-assisted secure transmission design is
proposed by maximizing the average secrecy rate, the trajec-
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tory of UAV, the transmit beamforming, and the phase shift of
RIS [36]. Simultaneous jamming and eavesdropping attacks
are considered in a RIS-assisted multi-user cellular network
with imperfect angular channel state information (CSI), and an
alternative optimization (AO) method is proposed to improve
both the spectrum efficiency and the security [37]. The feasi-
bility of UAV-assisted anti-jamming localization is studied and
evaluated to provide time-difference-of-arrival (TDoA) posi-
tioning service to ground users in jamming environments [15].
Specifically, the impacts of UAV self-localization uncertainty
and synchronization errors caused by jamming are theoreti-
cally analyzed to demonstrate the feasibility of the proposed
anti-jamming system. To protect the interests of operators
and legitimate users, a UAV-enabled cooperative jamming
framework is developed by optimizing the UAVs’ locations
and jamming power, and therefore preventing the unauthorized
use of positioning services [16]. However, to the best of our
knowledge, we are among the first to involve jamming attacks
in the current RIS-assisted localization systems. Also, most
existing anti-jamming approaches require knowledge of the
exact location of the malicious jammer in advance, which can
be impractical in real-world wireless mobile networks.

III. SYSTEM MODEL

As illustrated in Fig.1(a), we consider a three-dimensional
(3D) localization scenario in typical urban blind areas, where
the conventional positioning technologies such as GNSS sys-
tems and terrestrial infrastructure-based positioning fail to
meet the user’s requirements. In this harsh environment, a
hovering UAV (Receiver) equipped with a uniform planar
array comprising NV = NV x × NV y antennas in the x-
y plane continuously offers wireless localization service to
a single-antenna UE (Transmitter). As a service provider,
the position of the UAV is known and represented by
p

V
= (x

V
, y

V
, z

V
)
T in the Cartesian coordinate system.

We assume that the distance between adjacent antennas is
denoted by △d and satisfy △d = λ

2 , where λ denotes
the carrier wavelength. Consequently, the positions of the
UAV antennas (relative to the first one) can be expressed as
lx,y = [(x− 1)△ d, (y − 1)△ d, 0]

T, x ∈ {1, . . . , NV x}, y ∈
{1, . . . , NV y}. The position of the UE p

U
= (x

U
, y

U
, z

U
)
T is

unknown and should be estimated.
Due to the obstruction of the direct communication link be-

tween the UE and the UAV, as shown in Fig. 1(a), a RIS assists
in wireless localization by creating a reflected path for the pilot
signals transmitted from the UE. The RIS located at p

R
=

(x
R
, y

R
, z

R
)
T consists of NR = NRx×NRy passive reflecting

elements in the y-z plane and it is managed via a specialized
controller. Similarly, the positions of RIS reflecting elements
can be expressed as uv,h = [0, (v − 1)△ d, (h− 1)△ d]

T,
v ∈ {1, . . . , NRy}, h ∈ {1, . . . , NRz}, where △d is the
distance between adjacent elements. We assume the physical
size of the RIS constrained by NR and △d is not very large
in this work, which leads to small Fraunhofer distance and
therefore electromagnetic near-field effects could be ignored
[38, 39]. Unfortunately, the jamming signals emitted from a
single-antenna malicious jammer with the unknown position

p
J

= (x
J
, y

J
, z

J
)
T are reflected by the RIS toward the

UAV and therefore lead to severe degradation in positioning
accuracy. Specifically, we assume that the UAV, UE and RIS
are synchronized to the same clock [40].

A. Channel Model
The geometry model of the wireless localization system

is illustrated in Fig. 1(b). Let UR, RV and JR represent
the links of UE→RIS, RIS→UAV and jammer→RIS. We
denote the angle-of-arrival (AoA) in azimuth and elevation
of the direct links UR and JR as θ = [θaz, θel]

T and
ψ = [ψaz, ψel]

T, respectively. The angle-of-departure (AoD)
and AoA in azimuth and elevation of the reflected link RV
could be denoted by ϕ = [ϕaz, ϕel]

T and φ = [φaz, φel]
T,

respectively.
Since the LoS path is much stronger than NLoS paths,

within the far-field region of RIS, the channels h
UR

∈ CNR×1

and h
RV

∈ CNR×NV of the links UR and RV are expressed
as

h
UR

= ρ
UR
e−j2πτUR

f a (θ) , (1)

h
RV

= ρ
RV
e−j2πτRV

f a (φ) bT (ϕ) , (2)

where ρ
UR

and ρ
RV

represent the path loss, τ
UR

and τ
RV

indicate the corresponding transmission delay. The a (θ) and
a (φ) represent the response vectors of the direct link UR
and the steering vector of the reflected link RV at the RIS,
respectively. The vector b (ϕ) denotes the response vector at
the UAV. We further reformulate the vectors a (θ), a (φ), and
b (ϕ) as

a (χ) =

[
e−jw

T(χ)u1,1 , . . . , e
−jwT(χ)u

NRy,NRz

]T
,χ ∈ {θ,φ}

(3)

b (χ) =

[
e−jw

T(χ)l1,1 , . . . , e
−jwT(χ)l

NV x,NV y

]T
,χ ∈ {ϕ}

(4)

where w (χ) is a wave vector and expressed as

w (χ) =
−2π

λ
[sinχel cosχaz, sinχel sinχaz, cosχel]

T
.

(5)
Other specific channel parameters, if not mentioned, are pro-
vided in Appendix A. Furthermore, according to Eqs. (1) and
(2), the cascade channel of the link UE→RIS→UAV, denoted
by URV , at time slot t is formulated as

h
U,t

= (h
UR

⊙ h
RV

)
T
Φt = h

T
RV

diag (Φt)hUR
, (6)

where Φt ∈ CNR×1 represents the reflection coefficient
matrix operated by the RIS. We have Φt = βejωt , where
ωt =

[
ω1, . . . , ωNR

]T
and β =

[
β1, . . . , βNR

]
with βi ∈

[0, 1] ∀i represent the phase shift and the amplitude reflection
coefficient of the NR reflecting elements at the RIS [41]. For
the ease of practical implementation, the phase shift values are
obtained by uniformly spacing the interval [0, 2π).

Similarly, let h
JR

∈ CNR×1 be the channel of the direct
link JR, we have

h
JR

= ρ
JR
e−j2πτJR

f a (ψ) , (7)
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where ρ
JR

and τ
JR

are the path loss and the corresponding
transmission delay, respectively. Therefore, the cascade chan-
nel of the link jammer→RIS→UAV, denoted by JRV , can be
calculated by

h
J,t

= (h
JR

⊙ h
RV

)
T
Φt = h

T
RV

diag (Φt)hJR
. (8)

B. Signal Model

The UE can transmit either narrowband or OFDM pilot
signals xt ∈ C with the allocated power PU at time slot
t to perform wireless localization over a slotted transmis-
sion duration T . At the same time, the malicious jammer
attempts to interfere with the received signal by emitting
narrowband jamming signal st ∈ C with the constant power
PJ continuously. Similar to [29, 42], the pilot signal xt is
assumed to be the power constraint, that is, E[x2t ] = PU .
For the sake of simplicity, xt is treated to be 1 under the
power constraint PU . Unlike a stochastic jamming model
purposefully disrupting or blocking the signal transmission,
we assume a smarter jamming strategy by utilizing the effects
of multipath propagation to introduce errors in localization
measurements. Specifically, the jammer replays the target
user’s pilot sequences as the jamming pilot [43] to spoof the
receiver with complex multipath environments.

1) Narrowband signals: If the UE transmits narrowband
pilot signals at a carrier frequency f , the complex signal y

N,t
∈

CNR×1 received by the UAV at time slot t, which comprises
the pilot signal and the jamming signal, can be expressed as

y
nrw,t

=
√
PU (h

UR
⊙ h

RV
)
T
Φtxt︸ ︷︷ ︸

pilot signal

+
√
PJ (hJR

⊙ h
RV

)
T
Φtst︸ ︷︷ ︸

jamming signal

+nt. (9)

The independent and identically distributed (iid) additive white
Gaussian noise nt ∈ CNR×1 follows a normal distribution
CN

(
0, σ2

)
.

2) OFDM signals: If the UE transmits OFDM pilot signals
with N subcarriers, the effect of these delays on the signals
can be captured by the subcarrier vector d (τ

UV
) as follows:

d (τ
UV

) =
[
e−j2πτUV

(△f−B/2), . . . ,

e−j2πτUV
(N△f−B/2)

]T
, (10)

where △f denotes the subcarrier spacing, B indicates the
bandwith and τ

UV
represents the transmission delay of URV .

Therefore, the received signal y
M,t

∈ CNR×N at the UAV at
time slot t is presented as

y
ofdm,t

=
√
EU (h

UR
⊙ h

RV
)
T
Φt

(
dT (τ

UV
)⊙ xt

)︸ ︷︷ ︸
pilot signal

+
√
EJ (hJR

⊙ h
RV

)
T
Φtst︸ ︷︷ ︸

jamming signal

+nt, (11)

where EU = PU/N and EJ = PJ/N represents the trans-
mission power allocated to each subcarrier.

IV. ANTI-JAMMING LOCALIZATION FOR NARROWBAND
AND OFDM PILOT SIGNALS

The malicious jamming with unknown location and trans-
mission power leads to uncertain wireless environments and
therefore increases the difficulty of high-quality positioning
services to the UE. In this section, we propose a two-stage anti-
jamming localization approach to estimate the UE’s position
based on either narrowband or OFDM pilot signals in the
presence of jamming attacks. The fundamental concept in-
volves estimating the unknown channel and signal information
of the jammer at the former stage (Jamming Estimation)
and subsequently employing this acquired information for
anti-jamming localization of the UE at the latter stage (UE
Localization).

Jamming signal detection is the first step towards perform-
ing various anti-jamming strategies, which is beyond the scope
of this paper, as some detection algorithms have been reported
in the literature [44]. Generally speaking, one or multiple
performance metrics, i.e., carrier sensing time and signal-to-
noise ratio, are first measured and the existence of jammers is
further detected through different techniques, such as machine
learning, estimation-based method, and compressed sensing.

A. Jammer Estimation
At this stage, the UE is expected to remain silent so that

the UAV can identify the information of the jammer. Derived
from Eqs. (7) and (9), the received signals at the UAV can be
reformulated and stacked into a vector as below:z1...

z
T


︸ ︷︷ ︸

Z∈CTNV ×1

= α
JR

Λ1

...
ΛT


︸ ︷︷ ︸

Λ∈CTNV ×NR

a (ψ) +

n1

...
n

T


︸ ︷︷ ︸

N∈CTNV ×1

, (12)

where α
JR

=
√
PJρJR

e−j2πτJRf , Λt = hT
RV

diag (Φt), and
zt ∈ CNR×1 is the received jamming signal at time slot t.

Note that the transmission power PJ , channel parameters
ρ

JR
, τ

JR
, and ψ = [ψaz, ψel]

T are unknown, it is difficult
to obtain all exact information of the jammer at the UAV.
Alternatively, the UAV in this stage only needs to measure the
key parameters η

J
= [α

JR
,ψ]

T of the jammer based on the
maximum likelihood (ML) function, that is,[

α̂
JR
, ψ̂
]
= argmax f (Z | α

JR
,ψ)

= argmin ∥Z − α
JR

Λa (ψ)∥2 . (13)

Using the least squares (LS) criterion, the α
JR

can be esti-
mated and expressed as a function of ψ:

α̂
JR

(ψ) =
(Λa (ψ))

H
Z

∥Λa (ψ)∥2
. (14)

Substituting (14) in (13), the ψ̂ can be estimated by

ψ̂ = argmin

∥∥∥∥∥Z − (Λa (ψ))
H
Z (Λa(ψ))

∥Λa (ψ)∥2

∥∥∥∥∥
2

, (15)

which is a minimization problem with the complex periodic
function a (ψ) and ψ = [ψaz, ψel]

T.
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Furthermore, we introduce the Jacobi-Anger expansion [29],
which can approximate the complex periodic function as a
linear combination of a series of simple sinusoidal functions,
simplifying the analysis and computation process to tackle the
difficulty of the problem in Eq. (15). Hence, each term in
a (ψ) for i = 1, . . . , NR can be represented as

[a (ψ)]i = ej
2π
λ cosψelui,hej

2π
λ sinψaz sinψelui,v

≈ ej
2π
λ cosψelui,h

NA∑
n=−NA

jnJn

(
2π

λ
sinψelui,v

)
ejn(

π
2 −ψaz),

(16)

where Jn (·) denotes the n-th order Bessel function of the first
kind. Note that Jn (·) tends to zero as the increase of |n|, we
omit the terms with |n| > NA for a given NA. In this case,
the function [a (ψ)]i can be approximated by [a (ψaz, ψel)]i ≈
fT
i (ψel) g (ψaz), where

[fi (ψel)]n = ej
2π
λ cosψelui,zjnJn

(
2π

λ
sinψelui,y

)
, (17)

[g (ψaz)]n = ejn(
π
2 −ψaz), (18)

with n = −NA, . . . , NA and i = 1, . . . , NR. We fur-
ther have a (ψaz, ψel) ≈ F T (ψel) g (ψaz) with F (ψel) =
[f1 (ψel) , . . . ,fNR

(ψel)] ∈ C(2NA+1)×NR . Then, Eq. (12)
can be rewritten as

Z = α
JR

ΛF T (ψel) g (ψaz) +N . (19)

By introducing v (ψaz) = α
JR
g (ψaz), we have an estima-

tion of v (ψel) according to LS criterion:

v̂ (ψel) =

(
ΛF T (ψel)

)H
Z

∥ΛF T (ψel)∥2
. (20)

In the same way, substituting (20) into (19), the two-
dimensional ML estimation problem in (15) can be trans-
formed into two simple one-dimensional problems of solving
ψel and ψaz , respectively. That is, the optimal value of ψel
can be found out through linear search as follows:

ψ̂el = argmin
∥∥Z −ΛF T (ψel) v̂ (ψel)

∥∥2 . (21)

Specifically, the measured ψ̂el is considered as the initial point
to refine the estimation accuracy by using the Quasi-Newton
method, which can compensate for the errors introduced by
the on-grid effect. And then, the ψaz will be further estimated
by taking α̂

JR

(
ψaz, ψ̂el

)
into (15):

ψ̂az = argmin
∥∥∥Z − α̂

JR

(
ψaz, ψ̂el

)
ΛF T

(
ψ̂el

)
g (ψaz)

∥∥∥2 .
(22)

Accordingly, the value of ψaz could be further refined by using
the Quasi-Newton method as well.

Based on the angle information ψ̂ =
[
ψ̂az, ψ̂el

]T
, the

α
JR

can be further calculated according to Eq. (14). The
overall description of the proposed jammer estimation ap-
proach is shown in Algorithm 1. It can be observed that
the computational complexity of Algorithm 1 is domi-
nated by the estimation of v (ψel). According Eq. (20),

Algorithm 1: Jammer Estimation (Former Stage)
1 Initialization: Phase shift profile ω = {ωt}, AoA of the

reflected link RV φ.
2 Estimate the initial point of ψ̂el by linear search according to

Eq. (21).
3 Refine and update ψ̂el by the Quasi-Newton method.
4 Estimate the initial point of ψ̂az by linear search according

to Eq. (22).
5 Refine and update ψ̂az by the Quasi-Newton method.

6 Based on ψ̂ =
[
ψ̂az, ψ̂el

]T
, calculate α̂JR according to Eq.

(14).

7 Output: The jammer estimation results η̂J =
[
α̂JR , ψ̂

]T
.

the estimation of v (ψel) depends on the calculation of(
ΛF T (ψel)

)
as well as the pseudo-inverse of

(
ΛF T (ψel)

)
,

that is, O (TNVNR (2NA + 1)) + O
(
TNV (2NA + 1)

2
)

.
Then, the linear search with discretized grids of size
K1 is applied to achieve the initial point of ψel in
Eq. (21) and the Quasi-Newton method with the number
of iterations K2 is utilized to refined and updated ψel.
Therefore, the overall computational complexity of Algo-
rithm 1 is given by O (TNVNR (2NA + 1) (K1 +K2)) plus
O
(
TNV (2NA + 1)

2
(K1 +K2)

)
and further simplified as

O (TNV (K1 +K2) (2NA + 1)max {NR, 2NA + 1}).

B. Narrowband UE Localization

We first analyze the UE transmitting narrowband pilot
signals at this stage. Derived from Eqs. (1) and (9), the
complex received signals at the UAV can be vectorized into
Ynrw ∈ CNV T×1 as follows:

Ynrw = ΛAαnrw +N , (23)

where Λ = hT
RV

diag (Φ), A =
[
a (θ) a (ψ)

]
and αnrw =[

α
UR

α
JR

]T
with α

UR
=

√
PUρUR

e−j2πτURf . Note that the
UE’s transmission power PU and the jammer’s key informa-
tion η

J
= [α

JR
,ψ]

T are known, the target at this stage is to
estimate η

U
= [τ

UR
,θ]

T.
Given α̂

JR
and ψ̂, the ML estimation problem is formulated

as [
α̂nrw, θ̂

]
= argmin ∥Ynrw −ΛAαnrw∥2 . (24)

Using the least squares (LS) criterion, αnrw can be estimated
and expressed as a function of θ:

α̂nrw (θ) =
(ΛA (θ))

H
Ynrw

∥ΛA (θ)∥2
. (25)

Substituting (25) in (24), the θ can be estimated by

θ̂ = argmin

∥∥∥∥∥Ynrw − (ΛA (θ))
H
Ynrw (ΛA (θ))

∥ΛA (θ)∥2

∥∥∥∥∥
2

. (26)

Similar to the derivations in Section IV-A, we have A ≈
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F T
nrwGnrw based on the Jacobi-Anger expansion, where

Fnrw =

[
F (θel)
F (ψel)

]
∈ C(4NA+2)×NR , (27)

Gnrw =

[
g (θaz) 0(2NA+1)×1

0(2NA+1)×1 g (ψaz)

]
∈ C(4NA+2)×2. (28)

Then, Eq. (23) can be rewritten as

Ynrw = ΛF T
nrwGnrwα̂nrw (θ) +N . (29)

We introduce vnrw = Gnrwα̂nrw (θ) and transform it by
LS estimation, that is, v̂nrw =

(
ΛF T

nrw

)H
Ynrw/

∥∥ΛF T
nrw

∥∥2.
Currently, the original problem in Eq. (26) can be split into
two low-complexity ML estimators

θ̂el = argmin
∥∥Ynrw −ΛF T

nrwv̂nrw
∥∥2 , (30)

θ̂az = argmin
∥∥∥Ynrw −ΛF̂ T

nrwGnrwα̂nrw

∥∥∥2 , (31)

which can be separately solved by linear search and further
refined by the Quasi-Newton method.

Note that ρ
UR

=
√
g0/ ∥pU

− p
R
∥ is the free-space path

loss, where g0 is the path loss at a reference distance d0 =
1m. The propagation distance between the UE and the RIS
∥p

U
− p

R
∥ can be estimated by c · τ

UR
, where c is the speed

of light. To focus on the anti-jamming localization, we share a
similar idea of [45] and assume that there is prior knowledge of
g0 in the user’s region because the perfect CSI can be obtained
by various existing channel estimation methods [46, 47] and
remain unchanged for a relatively long time. In this way, αnrw
formulated in Eq. (23) can be viewed as a function of transmis-
sion delay τ

UR
, where α

UR
=

√
PU [

√
g0/(c ·τUR

)]e−j2πτURf .
Finally, the τ̂

UR
is calculated by

τ̂
UR

= argmin
∥∥∥Ynrw −ΛF T

nrwĜnrwαnrw (τ
UR

)
∥∥∥2 . (32)

C. OFDM UE Localization

The UE localization based on OFDM pilot signals is slightly
different from narrowband signals due to the subcarrier vector
d (τ

UV
). Similar to the derivations in Section IV-B, derived

from Eq. (11), the complex signal can be vectorized into
Yofdm ∈ CNV T×N as follows:

Yofdm = ΛAαofdm +N , (33)

where αofdm =
[
α

UR
d (τ

UV
) α

JR
1N
]T ∈ C2×N . The ML

estimation problem is formulated as[
α̂ofdm, θ̂

]
= argmin ∥Yofdm −ΛAαofdm∥2 . (34)

The calculation of θ̂ is the same as the ML estimators in Eqs.
(30) and (31).

Given the measured θ̂, the α̂ofdm can be solved as a
function of θ using the LS criterion:

α̂ofdm (θ) =
(ΛA (θ))

H
Yofdm

∥ΛA (θ)∥2
. (35)

Furthermore, it could be observed that only the first row of
αofdm is related to the delays. Substituting [αofdm]1,: =

Algorithm 2: UE Localization (Latter Stage)
1 Initialization: RIS’ position pR and phase shift profile
ω = {ωt}, UE’s transmission power PU , AoA of the
reflected link RV φ, the measured jammer information

η̂J =
[
α̂JR , ψ̂

]T
.

2 Estimate the initial point of θ̂el by linear search according to
Eq. (30).

3 Refine and update θ̂el by the Quasi-Newton method.
4 Estimate the initial point of θ̂az by linear search according to

Eq. (31).
5 Refine and update θ̂az by the Quasi-Newton method.
6 switch Type of pilot signals do
7 case Narrowband do

8 Based on θ̂ =
[
θ̂az, θ̂el

]T
, calculate τ̂UR according

to Eq. (32).
9 end

10 case OFDM do

11 Based on θ̂ =
[
θ̂az, θ̂el

]T
, calculate α̂ofdm (θ)

according to Eq. (35).
12 Based on α̂ofdm (θ), calculate τ̂UR according to

Eq. (37).
13 end
14 end

15 Based on η̂U =
[
τ̂UR , θ̂

]T
, calculate p̂U according to Eq.

(38).
16 Output: The UE estimation results η̂U and p̂U .

α
UR
dT (τ

UV
) into Eq. (35), we have

α̂
UR

=
d (τ

UV
)
H
[
α̂ofdm(θ̂)

]T
1,:

d (τ
UV

)
H
d (τ

UV
)

. (36)

Combining Eqs. (35) and (36), τ
UV

can be calculated by

τ̂
UV

= argmin

∥∥∥∥ [α̂ofdm(θ̂)
]T
1,:

− α̂
UR
d (τ

UV
)

∥∥∥∥2 . (37)

Then, τ̂
UR

can be estimated by τ̂
UR

= τ̂
UV

− τ
RV

.
The overall description of the proposed user localization ap-

proach suitable for both narrowband and OFDM pilot signals

is shown in Algorithm 2. Given the measured η̂
U
=
[
τ̂
UR
, θ̂
]T

,
the UE’s position p

U
can be computed by

p̂
U
= p

R
+ c · τ̂

UR

[
sin θ̂el cos θ̂az, sin θ̂el sin θ̂az, cos θ̂el

]T
.

(38)
Compared with narrowband-based localization, we can find
out that the proposed OFDM-based localization doesn’t require
any prior knowledge of the path fading factor g0 because the
CSI can be estimated by solving α̂ofdm in Eq. (35). The com-
putational complexity of Algorithm 2 primarily depends on the
estimation of vnrw. Similar to the complexity analysis in Algo-
rithm 1, the computational complexity of Algorithm 2 is given
by O (TNV (K1 +K2) (2NA + 1)max {NR, 4NA + 2}) for
either narrowband or OFDM pilot signals.

So far, the two-stage anti-jamming localization approach has
been introduced to localize the user’s position by eliminating
the jamming signal. Specifically, once the unknown channel
and signal information of the jamming have been estimated
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Fig. 2. Phase optimization process for the anti-jamming localization.

by Algorithm 1, the UE’s position can be further measured by
Algorithm 2 according to the type of pilot signals. It should
be noted that both Algorithm 1 and Algorithm 2 are one-shot
algorithms but their performance is limited to the transmission
duration T . A larger transmission time means more training
overhead but less estimation error.

V. RIS PHASE OPTIMIZATION

A two-stage anti-jamming localization approach has been
proposed to estimate the UE’s position. However, to cope
with the estimation error of the unknown channel and signal
information of the jammer, how to fully utilize the potential
of the RIS to further enhance localization accuracy is still a
challenging issue. In this section, we improve the estimation
accuracy by optimizing the phase shifts of the RIS during
the localization process. The proposed RIS phase optimization
process works in an iterative manner based on the historical
estimation results, as shown in Fig. 2. In each iteration, two-
phase optimization stages are carried out to iteratively update
the RIS phase shift profiles before the jamming estimation
and UE localization stages, respectively. One is to maximize
the reflected channel gain of the link RV , and the other aims
to enhance the received power of the pilot signal transmitted
by the UE and meanwhile mitigate the malicious interference
caused by the jammer.

A. Phase Design for Jammer Estimation
Note that the estimation error of the jammer’s key infor-

mation will affect the accuracy of the anti-jamming UE local-
ization result. In the k-th iteration of the jammer estimation
stage, derived from Eqs. (2) (7), and (9), we would like to find
a RIS phase shift profile ωkJ,t =

[
ωkJ,t,1, ... , ωkJ,t,NR

]T
to

maximize the channel gain of the propagation path JRV at
time slot t:

max
ωk

J,t

∥∥∥hT
RV

diag
(
Φk
J,t

)
h

JR

∥∥∥ =
∥∥∥ρJR

ρ
RV
e−j2π(τJR+τRV )f

b (ϕ)aT (φ) diag
(
Φk
J,t

)
a (ψ)

∥∥∥, (39)

where Φk
J,t = βejω

k
J,t . We observe that a (ψ) is defined

by Eq. (3) and only the term aT (φ) diag
(
Φk
J,t

)
a (ψ) are

influenced by Φk
J,t. By ignoring these terms that do not depend

on Φk
J,t, the problem in Eq. (39) is equivalent to

max
ωk

J,t

∥∥aT (φ) diag
(
Φk
J,t

)
a (ψ)

∥∥ (40)

=

∣∣∣∣∣
NR∑
i=1

βie
jωk

J,t,ie−j[w(ψ)+w(φ)]ui

∣∣∣∣∣
≤

NR∑
i=1

βi

∣∣∣ejωk
J,t,i−j[w(ψ)+w(φ)]ui

∣∣∣ .
Therefore, the maximum value of the problem in Eq. (40) is
achieved when the phase shifts of the i-th RIS element ω̂kJ,i
satisfy

ω̂kJ,t,i = ω̂kJ,i =
[
w
(
ψ̂k−1

)
+w (φ)

]
ui, ∀t (41)

where φ is known and ψ̂k−1 has been estimated in the last
iteration.

B. Phase Design for Narrowband UE Localization

In the k-th iteration of the UE localization stage, derived
from Eq. (9), we would like to find a RIS phase shift profile
ωkU,t =

[
ωkU,t,1, ... , ωkJ,t,NR

]T
to strengthen the received

power of the narrowband pilot signal and weaken the jamming
signal at time slot t:

max
ωk

U,t

∥∥∥√PU (h
UR

⊙ h
RV

)
T
Φk
U,t−

√
PJ (hJR

⊙ h
RV

)
T
Φk
U,t

∥∥∥ .
(42)

Similar to the derivations in Section V-A, we can simplify
the problem in Eq. (42) as

max
ωk

U,t

∥∥∥∥(√PUhUR
⊙a (φ)−

√
PJhJR

⊙a (φ)
)T

Φk
U,t

∥∥∥∥ (43)

=
∥∥∥((SU − SJ)⊙ a (φ))T Φk

U,t

∥∥∥
=

∣∣∣∣∣
NR∑
i=1

βi |SU,i−SJ,i|· ej∠(SU,i
−S

J,i)ejω
k
U,t,ie−jw(φ)ui

∣∣∣
≤

NR∑
i=1

βi |SU,i−SJ,i| ·
∣∣∣ejωk

U,t,i−jw(φ)ui+j∠(SU,i
−S

J,i)
∣∣∣ ,
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where SU =
√
PUhUR

and SJ =
√
PJhJR

. Therefore, the
optimal phase shifts of the i-th RIS element ωkU,i can be written
in close-form as

ω̂kU,t,i = ω̂kU,i = w (φ)ui − ∠ (SU,i−SJ,i) , ∀t (44)

where φ is known. The SU and SJ can be calculated using
η̂k−1
U and η̂kJ .

C. Phase Design for OFDM UE Localization

Differing from the analysis of the narrowband pilot signal,
the influence of the OFDM subcarriers should be taken into
consideration. For the OFDM pilot signals, in the k-th itera-
tion, the phase optimization problem for the anti-jamming UE
localization at time slot t can be written as

max
ωk

U,t

∥∥∥√EUhT
RV

diag
(
Φk
U,t

)
h

UR
dT (τ

UV
)

−
√
EJh

T
RV

diag
(
Φk
U,t

)
h

JR
1T
N

∥∥∥ (45)

Similarly, the problem in (45) is equivalent to

max
ωk

U,t

∥∥a (φ) diag (Φk
U,t

)
·(√

EUhUR
dT (τ

UV
)−

√
EJhJR

1T
N

)∥∥∥ (46)

=
∥∥a (φ) diag (Φk

U,t

)
·
(
LUd

T (τ
UV

)−LJ1T
N

)∥∥
=

∣∣∣∣∣
NR∑
i=1

N∑
n=1

βi
∣∣LU,iejΨn −LJ,i

∣∣ ·
ej∠(LU,i

ejΨn−L
J,i)e−jw(φ)uiejω

k
U,t,i

∣∣∣∣∣
=

∣∣∣∣∣
NR∑
i=1

βi |Di| ej∠Die−jw(φ)uiejω
k
U,t,i

∣∣∣∣∣
≤

NR∑
i=1

βi |Di| ·
∣∣∣ejωk

U,t,i−jw(φ)ui+j∠Di

∣∣∣ ,
where Ψn = −2πτ

UV
(n△f −B/2) , LU =

√
EUhUR

,
LJ =

√
EJhJR

and Di =
∑N
n=1

∣∣LU,iejΨn−LJ,i
∣∣

ej∠(LU,i
ejΨn−L

J,i). Then, the optimal phase shifts of the i-
th RIS element will be

ω̂kU,t,i = ω̂kU,i

= w (φ)ui

− ∠

(
N∑
n=1

∣∣LU,iejΨn−LJ,i
∣∣ ej∠(LU,i

ejΨn−L
J,i)

)
,

(47)

where φ is known. The LU and LJ can be calculated using
η̂k−1
U and η̂kJ .
The overall description of the proposed phase optimization

for anti-jamming localization (POAJL) is provided in
Algorithm 3. More specifically, at the initial stage, i.e.,
k = 0, the two-stage anti-jamming localization consisting
of Algorithm 1 and Algorithm 2 is leveraged to obtain
the initial parameters of both the jammer and the UE with
random RIS phase shift profiles ω̂0

J and ω̂0
U . In the k-th

Algorithm 3: Phase Optimization for Anti-Jamming
Localization (POAJL)

1 Initialization: RIS’ position pR and phase shift profiles
ω̂0
J = {ω̂0

J,i} and ω̂0
U = {ω̂0

U,i}, UE’s transmission power
PU , AoA of the reflected link RV φ.

2 Obtain the initial η̂0
J
=

[
α̂0

JR
, ψ̂0

]T
by Algorithm 1.

3 The UE transmits pilot symbols.

4 Obtain the initial η̂0
U
=

[
τ̂0
UR
, θ̂0

]T
and p̂0

U
by Algorithm 2.

5 Reply p̂0
U

to the UE.
6 while p̂k

U
does not converge do

7 Based on ψ̂k−1, obtain the optimal phase shift profile
ω̂k
J = {ω̂k

J,i} according to Eq. (41).
8 Control the RIS phase shifts with ω̂k

J and then update
η̂k

J
by Algorithm 1.

9 switch Type of pilot signals do
10 case Narrowband do
11 Based on η̂k−1

U and η̂k
J , obtain the optimal phase

profile ω̂k
U = {ω̂k

U,i} according to Eq. (44).
12 end
13 case OFDM do
14 Based on η̂k−1

U and η̂k
J , obtain the optimal phase

profile ω̂k
U = {ω̂k

U,i} according to Eq. (47).
15 end
16 end
17 Control the RIS phase shifts with ω̂k

U and then the UE
transmits pilot symbols.

18 Update η̂k
U

and p̂k
U

by Algorithm 2.
19 Reply p̂k

U
to the UE.

20 end
21 Output: UE’s position p̂k

U
, the optimal RIS phase shift

profiles ω̂k
J and ω̂k

U .

iteration, the UAV first optimizes the RIS phase shift profile
ω̂kJ according to the last iteration information and then
performs the jamming estimation in Algorithm 1 based on
the optimal phases. After the jamming estimation stage, the
RIS phase shift profile for the UE ω̂kU is further improved
according to the type of pilot signals. At the end of pilot
symbols transmission, the UE localization is executed by
Algorithm 2. The measured position of the UE p̂k

U
will

be replied at the end of each iteration and the localization
process terminates when the value of p̂k

U
converges. Note that

Algorithm 3 works in an iterative manner, its computational
complexity is not only dominated by the cost of the jammer
estimation and UE localization but also affected by the
number of iterations. We assume that Algorithm 3 stops in
KP iterations, then the overall computational complexity will
be O (TNV (K1 +K2)KP (2NA + 1)max {NR, 2NA + 1})
plus O (TNV (K1 +K2)KP (4NA + 2)max {NR, 2NA + 1})
and further simplified as O(TNV (K1 + K2)KP (2NA + 1)
max {NR, 4NA + 2}).

VI. EVALUATIONS

In this section, we evaluate the performance of the pro-
posed anti-jamming localization framework through extensive
simulations as shown in Fig. 3. In our considered scenario,
the RIS is located at (0, 0, 15)

T in meter (m), the hovering
UAV equipped with 2×2 antennas is randomly and uniformly
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Fig. 3. Simulation scenario for anti-jamming localization.

TABLE I
LIST OF KEY SIMULATION PARAMETERS

Parameter Value
Height of UAV and RIS, {zV , zR} 20m, 15m
Number of RIS elements, NR 36 (6× 6) or 64 (8× 8)
Number of UAV antennas, NV 4 (2× 2)
Approximation factor of

Jacobi-Anger expansion, NA 25
Transmission power, {PU , PJ} 10dBm [42]
Carrier frequency, f 28GHz
Wavelength, λ 1cm
Light speed, c 3× 108m/s
Path loss at 1m, g0 −31dBm [13]
Noise figure, nf 3dB [9]
Power spectral density (PSD)

of noise, N0 −174dBm/Hz
Narrowband pilot signal:

Noise variance σ2 = nfN0B
i) Bandwidth, B 12× 240kHz

OFDM pilot signal:
Noise variance per subcarrier σ2 = nfN0 △ f
i) Subcarrier space, △f 240kHz
ii) Number of subcarriers, N 12 [9]

distributed within the semi-annular region, with height 20
m highlighted in light blue (called UAV area), covering
the sector with central angle from 0◦ to 60◦ between the
inner and outer circles with the radius of 20m and 100m,
respectively. Similarly, the single-antenna UE and the single-
antenna jammer are randomly and uniformly distributed within
the blind area highlighted in light orange. Specifically, we
assume that the distance between the UE and the jammer
should be within [20, 50]m to ensure that the jammer can
remain hidden and not be captured. The RIS is empowered
for anti-jamming localization due to the disconnection of the
direct communication link between the UE and the UAV, e.g.,
blocked by the obstacles marked in black. Key parameters
are summarized in Table I. We assume unit-amplitude RIS
element response for simplicity, i.e., the amplitude reflection
coefficient βi = 1 ∀i [48]. We set NA = 25 for Jacobi-Anger
expansion in Eq. (16) according to [29]. To quickly obtain an
initial position of the UE and meanwhile decrease the training
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NR = 64.

overhead during the iterative process, the transmission duration
T is allowed to gradually increase until it reaches a sufficient
level to meet the application requirements of the Jacobi-Anger
expansion [29], i.e., T is initialized by 15 with its upper bound
set by 50.

We compare three approaches for the RIS-enhanced wireless
localization: 1) Random, where the RIS phase shifts are
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Fig. 6. Localization performance versus the number of iterations.

randomly initialized by uniformly spacing the interval [0, 2π)
and are always fixed during the whole iterative process; 2)
AMML, which is the approximated mismatched maximum
likelihood (AMML) approach proposed in [29] without con-
sidering the impact of the jammer; 3) POAJL, which refers to
the iterative phase optimization approach in Algorithm 3. Note
that both the Random and our proposed POAJL approaches
apply the two-stage anti-jamming localization as investigated
in Algorithm 1 and Algorithm 2. We use NRW and OFDM
to represent the wireless localization techniques based on
narrowband and OFDM pilot signals, respectively. Besides,
we introduce a common measurement tool, namely root mean
square error (RMSE), in estimating the differences between
true values and observed values [10, 12], as the localization
performance metric, which is defined by

RMSE =

√√√√ 1

M

M∑
m=1

(x̂− x)
2
, (48)

where M is the number of simulations, x and x̂ denote the
real value and estimated value of a specific parameter. More
specifically, the RMSE is utilized to evaluate not only the
estimated position of the UE p

U
but also those key impact

factors, which are estimated during the localization process

and will affect the final localization performance, such as
transmission delay τ

UR
, AoA in azimuth θaz , and AoA in

elevation θel.

1) Jammer’s Location: We first discuss the impact of the
jammer’s location. The relative distance between the RIS and
the jammer is demonstrated in Fig. 4(a), where the UE is
randomly located with 60m relative distance to the RIS. We
can observe that there exists a significant peak in RMSE for
UE localization with both the Random approach and the orig-
inal POAJL approach called POAJL-orign. This is primarily
due to the similarity in relative distance to the RIS, i.e., 60m,
leading to a comparable approximation of AoA in elevation
ψel and θel, which will increase the estimation error when
differentiating θel by Eq. (30). To address this issue, we further
improve the proposed UE localization approach in Section
IV-B. We use π/180 as a finite resolution to sample θel within
the range of (−π/2,−π) and then obtain a series of angel pairs
by plugging each sampled value into Eq. (31) to calculate the
corresponding θaz . In this way, the optimal pair (θel, θaz) with
minimum value of Eq. (26) can be found through linear search.
Furthermore, the refined UE localization approach could be
also applied to our proposed POAJL approach in the rest of
the simulations. Fig. 4(a) illustrates that the improved POAJL
approach can greatly eliminate the adverse impact of the
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Fig. 7. Performance comparisons versus different number of RIS reflecting elements.

jammer’s location and is applicable for both narrowband and
OFDM pilot signals.

Fig. 4(b) demonstrates the localization RMSE versus the
relative distance between the UE and the jammer. In general,
higher localization accuracy could be achieved with OFDM
pilot signals compared to narrowband pilot signals. The RMSE
decreases with the increased relative distance when using the
Random and our proposed POAJL approaches. The reason is
that a closer relative distance between the UE and the jammer
leads to similar channel conditions and therefore degrades
the localization accuracy when applying the proposed two-
stage anti-jamming localization algorithm. On the contrary, the
RMSE in the AMML approach decreases with the increased
relative distance because the jamming attack remains to be
solved. Compared with the Random approach, our proposed
POAJL approach can achieve better localization accuracy
thanks to the well-designed iterative phase optimization al-
gorithm.

2) Jamming Power: We then investigate the localization
accuracy versus the jamming power, i.e., the transmission
power of the jammer, as shown in Fig. 5. In other words,
the increased jammer power implied an increased jammer-user
power ratio when the transmission power of the UE is fixed.

Thanks to the proposed two-stage anti-jamming localization
algorithm, we observe that both the Random and our proposed
POAJL approaches can achieve significant improvements in
the localization accuracy against jamming attacks as compared
to the AMML approach. Specifically, the proposed POAJL
approach remains unaffected by the increased jamming power
and therefore can achieve an average RMSE of 5.07 meters
and 1.40 meters when using narrowband and OFDM pilot
signals, respectively. In other words, compared with the Ran-
dom approach, our proposed POAJL approach can reduce the
localization RMSE by 36.31% and 48.84% accordingly.

3) Iterative Process: The localization performance during
the iterative process is shown in Fig. 6. In Fig. 6(a), due
to the increased transmission times T , the RMSE of both
the Random and the proposed POAJL approaches could be
iteratively improved through the proposed two-stage anti-
jamming localization algorithm, whereas the AMML approach
does not benefit from the iterative process. Besides, the pro-
posed POAJL approach outperforms the Random approach by
optimizing the RIS phase shift profiles. The performance of the
proposed POAJL approach with different reflecting elements
NR and UAV antennas NV are demonstrated in Fig. 6(b) and
Fig. 6(c), respectively. We can observe that more reflecting
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Fig. 8. Localization Performance of POAJL approach.

elements or UAV antennas are used lower localization RMSE
is achieved and fewer iterations are required for convergence.
Nevertheless, note that more reflecting elements or UAV anten-
nas meanwhile will introduce higher computing requirements
for user localization. Moreover, to verify the approximation
effect of the Jacobi-Anger expansion, the performance of the
proposed POAJL approach with different values of NA is
illustrated in Fig. 6(d). The results show that the localization
performance has little enhancement when the approximation
factor NA increases from 20 to 50. Namely, sufficient local-
ization accuracy can be achieved if the constraint of NA is
satisfied.

4) RIS Elements: Finally, as shown in Fig. 7, we demon-
strate the localization performance with the increased RIS
reflecting elements NR from the perspective of the UE’s
estimated position p

U
and other intermediate parameters of

the directed link UR, that is, the transmission delay τ
UR

, the
AoA in azimuth θaz and elevation θel. In general, jamming
signals cause significant errors in angle estimation when using
the AMML approach, as shown in Fig. 7(a) and Fig. 7(b).
Nevertheless, both the Random and the proposed POAJL
approaches demonstrate an improved ability to mitigate the
jamming effect with the increased RIS reflecting elements.
The performance gap between the two approaches with large

RIS reflecting elements is not obvious because sufficiently
large RIS elements will give no extra benefit to the esti-
mation improvement. Additionally, in Fig. 7(c), we find out
that the RMSE of transmission delay τ

UR
based on OFDM

pilot signals is greatly smaller than that of narrowband pilot
signals, which is because the multiple OFDM subcarriers can
provide more information for transmission delay estimation.
The estimation improvement of transmission delay τ

UR
based

on narrowband pilot signals makes the biggest contributions
to the localization accuracy when using both the Random and
the proposed POAJL approaches. With large RIS elements, the
proposed POAJL approach still can achieve more estimation
improvement of transmission delay τ

UR
, especially when

narrowband pilot signals are applied.

Overall, the proposed POAJL approach can outperform
other approaches in terms of localization RMSE, especially
the estimated position of the UE in Fig. 7(d), which represents
the final localization accuracy. For example, when the number
of RIS elements NR is 6× 6, the proposed POAJL approach
can reduce the localization RMSE by 32.07% and 53.06%
compared with the Random approach when using narrowband
and OFDM pilot signals, respectively. Even with large RIS el-
ements 10×10, the proposed POAJL approach still can reduce
the localization RMSE by 45.16% and 55.32%, respectively.
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5) Other Factors: Note that so far only the LOS path has
been involved in the simulations, we further consider a more
realistic Rician fading model in Appendix B, i.e., LoS links co-
exist with NLoS, for the received signals through the wireless
links UR, RV and JR, where the Rician factors K

UR
, K

RV
,

and K
JR

are set to 31.3. The localization performance of the
proposed POAJL approach in both LOS and NLoS scenarios
is shown in Fig. 8(a). We can observe that the localization
accuracy with the Rician fading model is deteriorated by NLoS
propagation. Still, the proposed POAJL approach based on
OFDM pilot signals can perform better against the influence
of NLoS when the RIS elements become large.

We quantify performance penalties due to RIS amplitude
variations [49], as shown in Fig. 8(b), where the ideal response
is the unit-amplitude RIS element response. The realistic RIS
amplitude model is provided in Appendix C, where β̄min = 0.7,
ϑ̄0, and κ̄ = 1.5 [50, 51]. Note that βi is a function of
the applied phased shift ωi, our POAJL approach utilizes
the applied phase profile in the last iteration to calculate
the amplitude responses for phase optimization. The results
show that the phase-dependent amplitude variations degrade
the localization accuracy but more RIS elements can mitigate
this performance loss, i.e., 8×8 RIS elements based on OFDM
pilot signals.

Furthermore, we discuss how the proposed POAJL approach
confronts the noise level at the jammer side. According to Eqs.
(9) and (11), the noise integrating with the jamming signal can
be regarded as a component of nt. Note that the received noise
at the UE side is connected with the location of the jammer and
the RIS phase shift profile, we provide the performance with
the increased PSD of noise N0 to simplify. As shown in Fig.
8(c), the localization performance decreases with the increased
noise level because the noise nt is treated to 0 throughout
the derivations of the proposed POAJL approach. Still, the
OFDM pilot signals have better performance to eliminate the
adverse impact of noise level and more RIS elements can
greatly overcome the drop in estimation error.

Based on the jammer estimation in the former stage, an
intuitive approach denoted by Orthogonal is to exploit the
orthogonal RIS phase shift profile to eliminate the jamming
signal in the latter stage. As shown in Fig. 8(d), we can observe
that the proposed POAJL approach has better localization
accuracy than the Orthogonal approach. The reason is that the
Orthogonal approach aims at eliminating the jamming signal
but at the same time may reduce the received power of the pilot
signal transmitted by the UE. However, the proposed POAJL
approach optimizes the RIS phase shift profiles to not only
enhance the UE’s pilot signal but also mitigate the malicious
interference caused by the jammer.

VII. CONCLUSIONS

This paper investigates a RIS-enhanced wireless localiza-
tion framework, where a two-stage anti-jamming algorithm is
investigated to mitigate the malicious interference caused by
jamming attacks and a phase optimization algorithm is further
utilized to iteratively improve the localization accuracy. We
discuss the localization performance based on narrowband and

OFDM pilot signals. Overall, the proposed POAJL approach
can iteratively optimize the RIS phase shift profiles and
outperform other approaches in terms of localization RMSE.
Although our proposed framework offers certain contribu-
tions, we may face limitations when comparing with practical
jamming attacks, which can transmit the jamming signals
with time-varying power and random pilot sequences. Thus,
as a future direction, we expect to tackle this difficulty by
proposing reinforcement learning-based approaches. There are
also several future research avenues considering the jammer
with multiple antennas and the multi-jammer scenario.
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APPENDIX A
GEOMETRY

The channel parameters are given below. The c is the speed
of light.
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APPENDIX B
RICIAN FADING MODEL

By applying the Rician fading model, the channel of links
UR, RV , and JR can be respectively given by
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where K
UR

, K
RV

, and K
JR

are the Rician factors. The
hLoS

UR
= e−j2πτUR

f a (θ), hLoS
RV

= e−j2πτRV
f a (φ) bT (ϕ)

and hLoS
JR

= e−j2πτJR
f a (ψ) are the LoS components of the

UR, RV and JR links, respectively. The hNLoS
UR

, hNLoS
RV

and
hNLoS

JR
are the NLoS components and follow the zero-mean

circularly symmetric complex Gaussian (CSCG) distribution
with unit-variance.
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APPENDIX C
RIS AMPLITUDE MODEL

In the realistic RIS amplitude model, the amplitude reflec-
tion coefficient of each RIS element is expressed as

βi(ωi) = (1− β̄min)
( sin (ωi − ϑ̄) + 1

2

)κ̄
+ β̄min, (64)

where β̄min ≥ 0, ϑ̄ ≥ 0, and κ̄ ≥ 0 are the constants related
to the specific circuit implementation. The ωi is the applied
phase shift of the corresponding RIS element.
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